Tracking Control of a Spool Displacement in a Direct Piezoactuator-Driven Servo Valve System

نویسندگان

  • Chulhee Han
  • Yong-Hoon Hwang
  • Seung-Bok Choi
چکیده

This paper presents tracking control performances of a piezostack direct drive valve (PDDV) operating at various temperatures. As a first step, a spool valve and valve system are designed to be operated by the piezoactuator. In this study, the stacked piezoelectric actuator, which is lead–zirconate–titanate (PZT) ceramic is used for control of spool displacement. An aerogel is used for heat insulation since the PZT piezoelectric actuator has low Curie temperature. After briefly describing the operating principle, the governing equation of the proposed valve system is driven including the piezostack actuator. Subsequently, an experimental apparatus for investigating the effect of temperatures on the performances is set up. The PDDV is installed in a large-size heat chamber equipped with electric circuits and sensors. A classical proportional-integral-derivative (PID) controller is designed and applied to control the spool displacement. In addition, a fuzzy algorithm is integrated with the PID controller to enhance the performance of the proposed valve system. The gain of PID changes to satisfy the target frequency and displacement according to input frequency and operating temperature. Therefore, fuzzy algorithm with two input variables that are frequency and temperature can determine the gain of PID controller. The tracking performance of a spool displacement is tested by increasing the temperature and exciting frequency up to 150°C and 200 Hz, respectively. It is shown that the tracking performance heavily depends on both the operating temperature and the excitation frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-objective Sliding Mode Approach for the Energy Saving Control of Pneumatic Servo Systems

This paper proposes a variation on a sliding mode control approach that provides significant energy savings for the control of pneumatic servo systems. The control methodology is formulated by first decoupling the standard four-way spool valve used for pneumatic servo control into two three-way valves, then using the resulting two control degrees of freedom to simultaneously satisfy both the sl...

متن کامل

Energy Saving Control for Pneumatic Servo Systems

This paperproposes an energy saving approach io the control ofpneumaiic servo systems. The control meihodology is presenied, followed by experimental results ihai indicate significani energetic savings and esseniially no compromise in tracking performance relative to a purely active approach. Speci$cally, experiments indicaie an energv savings of 10 to 46% (depending on the desired tracking fre...

متن کامل

Dynamic Constraint-Based Energy-Saving Control of Pneumatic Servo Systems

This paper proposes a control approach that can provide significant energy savings for the control of pneumatic servo systems. The control methodology is formulated by decoupling the standard four-way spool valve used for pneumatic servo control into two threeway valves, then using the resulting two control degrees of freedom to simultaneously satisfy a performance constraint (which for this pa...

متن کامل

Design Servo System Type and Positioning of Pole Observer Full Rank a Piezoelectric Servo Valve without Integrator

In this paper, the method of modern control approach for the design of controller and observer is used. Other functions such as neural controllers - or fuzzy sliding mode control can be found in this work and the results are compared. First, a dynamic model of the servo valve is intended for the governing equations in state-space form expression are obtained. Due to the system integrator is exp...

متن کامل

Energy Saving in Pneumatic Servo Control Utilizing Interchamber Cross-Flow

This paper proposes a structure and control approach for the energy saving servo control of a pneumatic servo system. The energy saving approach is enabled by supplementing a standard four-way spool valve controlled pneumatic actuator with an additional two-way valve that enables flow between the cylinder chambers. The “crossflow” valve enables recirculation of pressurized air, and thus enables...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017